foresee
Release 0.1.0a8

Jun 21, 2020

Contents:

1 Introduction
L1 TODO: . . .

2 Quick Start
2.1 Installforesee o e e e e e
2.2 Example 1: one time series as a single column dataframe
2.3 Example 2: multiple time series as a dataframe with a time seriesid column
2.4 Example 3: run forecasts with Ulapp

3 Modules Reference
3.1 COMPOSE . . v o i e e e e e e e e e e e e e e
32 fitter. e e
33 0 MAIN . . oL e e e e e e e
34 utils oo

4 Models Reference
4.1 EWM . . e
42 FFT . .o
43 Holt WINters o e e e e e e
4.4 Prophet L e
45 SARIMAX . . e

5 Authors

6 License

7 How to contribute

8 Indices and tables

Python Module Index

Index

W W

13
13
13
13
13
13

15

17

19

21

23

25

foresee, Release 0.1.0a8

Welcome to foresee documentation!

foresee is a python package. Provided a time series and its parameters, foresee can generate forecasts using several
time series forecasting models in python, can tune hyper parameters of these models, and can compare their forecast
results using out of sample forecast accuracy. This library can process more than one time series if a time series id is
provided. To get started, install foresee using pip

$ pip install foresee

and try one of these examples.
e Example 1: one time series as a single column dataframe
e Example 2: multiple time series as a dataframe with a time series id column
* Example 3: run forecasts with Ul app

or try it out at: https://easy-forecast.herokuapp.com/

Note: Code and documentation for this library are still under development and will change frequently.

Contents: 1

https://easy-forecast.herokuapp.com/

foresee, Release 0.1.0a8

2 Contents:

CHAPTER 1

Introduction

There are several open source python packages with models for time series forecasting. The goal of this project is
to generate forecasts using some of these models, compare their results in a holdout period, and report the outcome.
There is also functionality for model hyper-parameter tuning across pre-selected parameters and space using hyperopt
library. Forecasting and tuning process can run in parallel using dask library, if needed, to speed up the operation.

This library has a basic web application created using plotly-dash which can accept csv file, for input data, and some
parameters using drop downs and check lists. Forecast results is then displayed as a table and can be downloaded.

Currently there are five different forecasting models available. These will generate forecasts using their default pa-
rameters if tuning is not selected but with tuning a pre-selected set of their parameters will be tuned over a pre-defind
space by comparing forecast accuracy over a holdout period.

1) EWM: Exponentially Weighted Mean

2) FFT: Fast Fourier Transformation

3) Holt-Winters: Holt Winters exponential smoothing model from statsmodels library
4) Prophet: Prophet model from fbprophet library

5) SARIMAX: Sarimax model from statsmodels library

1.1 TODO:

* add new models
* design user control over parameters and parameter space

¢ include other loss functions like mse

foresee, Release 0.1.0a8

4 Chapter 1. Introduction

CHAPTER 2

Quick Start

2.1 Install foresee

foresee is hosted on PyPI and can be installed with pip.

$ pip install foresee

2.2 Example 1: one time series as a single column dataframe

import warnings
warnings.filterwarnings ("ignore")

import pandas as pd
import numpy as np

from io import StringIO
import importlib_resources

import collect_result for handling the process
from foresee.scripts.main import collect_result

'basic_time_series_data.csv' file has only one column containing time series values
basic_time_series_data_txt = importlib_resources.files('foresee.data').joinpath (

— 'basic_time_series_data.csv') .read_text ()

ts_df = pd.read_csv(StringIO (basic_time_series_data_txt))
ts_df.head()

present data here

user defind parameters

(continues on next page)

foresee, Release 0.1.0a8

(continued from previous page)

1f input dataframe has more than one column, provide column name containing time,,
—series data

endog_colname = None

if len(ts_df.columns) > 1 and endog_colname is None:
raise ValueError ('time series column name is required!!!")

1f uploading your own sample data, update the following parameters 1f needed

freqg = 5

fcst_length = 10

model_list = ['ewm_model', 'fft', 'holt_winters', 'prophet', 'sarimax']
rri

avilable run types: 'all models', 'best_model', 'all_best'

all _models: no holdout, no tuning, no model competition. return results for all models
best_model: compare models forecast accuracy and return the result of the best model

all best: compute forecast accuracy for all models and return the result for all_
—models

run_type = 'all models'
1f comparing models results, holdout length is required
if run_type == 'all models':

holdout_length = None
else:

holdout_length = 20

we are working with one time series and no date-time column so time series id and_
—date-time column name are set to None.

gbkey = None

ds_column = None

tune = False

we are fitting one time series in this example so no need to parallelize.

fit_execution_method = 'non_parallel'

rro

result: dataframe containing fitted values and future forecasts
fit_results_list: 1ist of dictionaries containing fitted values, forecasts, and_

—errors (useful for debuging)
rrr

result, fit_result_list = collect_result (
ts_df.copy (),

(continues on next page)

6 Chapter 2. Quick Start

foresee, Release 0.1.0a8

(continued from previous page)

endog_colname,

gbkey,

ds_column,

freq,

fcst_length,
run_type,
holdout_length,
model_list,
fit_execution_method,
tune

result.head()
present data here

2.3 Example 2: multiple time series as a dataframe with a time series
id column

import warnings
warnings.filterwarnings ("ignore")

import pandas as pd

import numpy as np

from io import StringIO

import importlib_resources

import main from foresee.scripts
from foresee.scripts import main

upload sample time-series dataframe with columns (id, date_stamp, y)

test_data_light_txt = importlib_resources.files('foresee.data').joinpath('test_data_
—light.csv') .read_text ()

ts_df = pd.read_csv(StringIO (test_data_light_txt))

ts_df['date_stamp'] = pd.to_datetime (ts_df['date_stamp'])

ts_df.head()

user defind parameters

time series values column name: required 1f input dataframe has more than one column
endog_colname = 'y'

if len(ts_df.columns) > 1 and endog_colname is None:
raise ValueError ('time series column name is required!!!")

time series frequency
freqg = 5

out of sample forecast length
fcst_length = 10

(continues on next page)

2.3. Example 2: multiple time series as a dataframe with a time series id column 7

foresee, Release 0.1.0a8

(continued from previous page)

available forecasting models
model_list = ['ewm_model', 'fft', 'holt_winters', 'prophet', 'sarimax']

avilable run types: 'best_model', 'all_best', 'all _models'
run_type = 'all best'

1f comparing models (run_type in 'best_model' or 'all_best') then holdout length 1is_
—required

if run_type == 'all models':
holdout_length = None
else:
holdout_length = 20

fit-forecast computations can be done in parallel for each time series. requires,
—dask library!!!

for sequential processing set fit_execution_method to 'non_parallel’
fit_execution_method = 'parallel'

since we have two time series 1in this dataset, time series id column name and date-
—time column name are required.

gbkey = 'id'

ds_column = 'date_stamp'

tune = True

rrr

result: dataframe containing fitted values and future forecasts
fit_results_list: 1ist of dictionaries containing fitted values, forecasts, and_

—errors (useful for debuging)
rrir

result, fit_result_list = main.collect_result (
ts_df.copy (),
endog_colname,
gbkey,
ds_column,
freq,
fcst_length,
run_type,
holdout_length,
model_1list,
fit_execution_method,
tune

result.head()

2.4 Example 3: run forecasts with Ul app

This simple U accepts csv file for input data and has check lists to set neccessary parameters. Application runs at this
url: http://localhost:8050/dash

8 Chapter 2. Quick Start

http://localhost:8050/dash

foresee, Release 0.1.0a8

Excecute the following block of code then navigate to above URL, fill out time series information, and drop your file
to be processed. Results will be returned as a table and can be downloaded.

import flask
import dash

server = flask.Flask(name)
@server.route('/"')
def index():

return 'Flask root.'

from foresee.webapp.dash_app import app

if name == '_ _main_ ':

app.run_server ()

2.4. Example 3: run forecasts with Ul app 9

foresee, Release 0.1.0a8

10 Chapter 2. Quick Start

CHAPTER 3

Modules Reference

3.1 compose
3.2 fitter
3.3 main

3.4 utils

Local utility functions

foresee.scripts.utils.read_csv (file_name)
[summary]

Parameters file_name ([type]) — [description]
Returns [description]
Return type [type]

foresee.scripts.utils.read_json (file_name)
[summary]

Parameters file_name ([type]) — [description]
Returns [description]

Return type [type]

11

foresee, Release 0.1.0a8

12 Chapter 3. Modules Reference

CHAPTER 4

Models Reference

4.1 EWM

4.2 FFT

4.3 Holt Winters
4.4 Prophet

4.5 SARIMAX

13

foresee, Release 0.1.0a8

14 Chapter 4. Models Reference

CHAPTER B

Authors

* Hamid Mohammadi (hmohammadi6545 @ gmail.com)

15

mailto:hmohammadi6545@gmail.com

foresee, Release 0.1.0a8

16 Chapter 5. Authors

CHAPTER O

License

Note: MIT License
Copyright (c¢) 2020 Hamid Mohammadi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

17

foresee, Release 0.1.0a8

18 Chapter 6. License

CHAPTER /

How to contribute

Contributions in any form are welcome, including:
¢ Documentation improvements
* Additional tests
* New models
¢ New features to existing models
e Ul design
Discussions take place at foresee channel on slack

join us on slack

19

https://join.slack.com/t/openstatworkspace/shared_invite/zt-e6cemrxs-dmHBIpHrZE_U0iciJBu6sA

foresee, Release 0.1.0a8

20 Chapter 7. How to contribute

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

21

foresee, Release 0.1.0a8

22 Chapter 8. Indices and tables

Python Module Index

f

foresee.scripts.utils, 11

23

foresee, Release 0.1.0a8

24 Python Module Index

Index

F

foresee.scripts.utils (module), 11

R

read_csv () (in module foresee.scripts.utils), 11
read_json () (in module foresee.scripts.utils), 11

25

	Introduction
	TODO:

	Quick Start
	Install foresee
	Example 1: one time series as a single column dataframe
	Example 2: multiple time series as a dataframe with a time series id column
	Example 3: run forecasts with UI app

	Modules Reference
	compose
	fitter
	main
	utils

	Models Reference
	EWM
	FFT
	Holt Winters
	Prophet
	SARIMAX

	Authors
	License
	How to contribute
	Indices and tables
	Python Module Index
	Index

